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Abstract 

The electrocardiogram (ECG) is a common and 

important indicator for diagnosing cardiovascular 

diseases. The wearable ECG monitoring equipment 

provides patients with long-term ECG monitoring. But 

the acquisition signals are susceptible to motion artifact 

(MA). Reducing MA while ECG processing will help 

accurately analyse the ECG and make a correct judgment 

on patients. This paper mainly analyses how to enhance 

the ECG collected under long-term monitoring and tries 

to propose an adaptive ECG enhancement method which 

is composed of adaptive division of human motion state 

and a modified adaptive Wiener filter based on Bayesian 

estimation. The method is evaluated on MITDB and 

CPSC2019 database, as well synchronous ECG, and 

three-axis acceleration data in the real world. The heart 

rate performance index is designed, and it is found that 

the heart rate calculation accuracy can be improved by 

24.5% after the ECG is enhanced. It is proved that the 

method can achieve a good performance of ECG 

enhancement under different body motion states. 

 

 

1. Introduction 

Electrocardiogram (ECG) contains many 

morphological features, which consist of a series of 

characteristic waveforms (P, Q, R, S, T, and U), and is a 

diagnosing indicator for cardiovascular disease [1, 2].  

The importance of ECG in disease prevention and 

treatment causes the development of ECG monitoring and 

processing. Wearable ECG acquisition devices, which are 

comfortable to wear and have no time limitation, can 

achieve long-term monitoring. For instance, both GTWN 

from Georgia Institute of Sensorws [3] and T-shirt with 

12-lead fabric electrodes from Zhang [4] are typical 

wearable devices. However, motion artifact (MA) is 

overlapped with ECG in the frequency domain and results 

in ECG misdiagnosis. 

To reduce misdiagnosis, researchers preliminarily used 

traditional band-pass filter to pre-process ECG and 

eliminate noise outside ECG frequency band. But it was 

difficult to suppress MA. Hence, other methods were 

considered. Wiener filter can be used in continuous and 

discrete stationary stochastic processes. Using Wiener 

filter and other methods, Sharma denoised ECG and 

compared the results according to signal-to-noise ratio 

(SNR) and power spectral density (PSD) which proved 

that Wiener filter has great performance [5]. Woolfson 

firstly proposed a time-varying Wiener filter of fetal ECG 

with wavelet transform [6], and after that, Wiener filter 

was improved to denoise high resolution ECG (HRECG). 

Lander introduced a posterior Wiener filter which was 

conducted on time-frequency plane and was the basis of 

new time-frequency plane Wiener filter [7, 8]. 

Combination of discrete wavelet transform and Wiener 

filter had the best performance on HRECG denoising in 

aspect of Least squares [9]. A two-step ECG denoising 

algorithm from Nikolaev [10] and adaptive Wiener filter 

from Wang [11] and Gunarathne [12] were used to 

denoise ECG. However, most methods are based on the 

stability of ECG. If ECG is collected in strong noise 

environment, the accuracy of Wiener filter will decline. 

Therefore, many methods analysed ECG with 

reference signals. Using acceleration sensors to acquire 

reference data, which is highly relevant to ECG, Zhang 

created a new normalized LMS algorithm [13]. Tanweer 

observed reference signals by using nine-axis acceleration 

and then denoised ECG with Savitzky-Golay filter. In 

addition, using reference signals, ECG can also be 

divided into different windows. Researchers can consider 

which windows can be used. For example, by using 

Inertial Measurement Unit (IMU) and electromyogram 

signals, Wei chose and saved proper windows to improve 

accuracy of ECG processing [14]. The above methods 

achieved better performance of ECG denoising.  

This work combines the RR interval of ECG and IMU 

data to achieve window division for which ECG can be 

chosen to save or discard. A modified adaptive Wiener 

filter is designed meanwhile to denoise ECG. Eventually, 

an adaptive ECG enhancement method is introduced. 

 

2. Methods 

2.1. Motion state division 
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The acceptability of ECG is determined by the ECG 

quality assessment, which contains two types, namely the 

basic quality assessment and the diagnostic quality 

assessment [15]. Basic quality assessment means that the 

R wave is still clearly visible under noise, and the 

information on heart rate can be extracted. As shown in 

Figure 1, for motion state division, this paper selects IMU 

data and RR interval of ECG as reference data to evaluate 

ECG quality with 2-group basic quality assessment 

method. ECG can be classified into different windows by 

the results. The signal windows with less interference will 

be chosen for further analysis, and those with more 

interference will be discarded directly. 

ECG and IMU data acquisition

Calculate IMUJ and QRSJ in  

sliding window 

IMUJ>IMUT?

Signal with a large degree of 

interference, discard it

Signal with a small degree of 

interference, save and process it

NO

QRSJ>QRST?

YES

YES

NO

 
Figure 1. Flow chart of motion state division using IMU 

data and RR interval. 

 

While acquiring ECG, IMU is used to obtain 

synchronized reference data. In this paper, the amount of 

data that exceeds a threshold (IMUT) is selected as the 

basis for judgment. 

For the R wave detection results, the judgement is 

based on whether the RR interval is evenly distributed. A 

threshold (QRST) is set in advance to determine whether 

the difference (QRSJ) between an RR interval and the 

average of all RR intervals is greater than QRST.  

The IMU judgement basis IMUJ is defined as: 

IMUJ = ∑ (sign( x(i)2 + y(i)2 + z(i)2), Thr)n
i=m         (1)       

where n and m are the last and first point coordinate of 

the sliding window. Thr is a threshold set for IMU data 

sum of squares and IMUJ indicates the total number of 

points that exceed IMUThr. The value of Thr is 1. 

The RR interval judgement basis QRSJ is defined as: 

QRSJ = sign( RRt - RRm, QRST )                (2) 

where RRt is each RR interval and RRm is the average 

of all RR intervals. 

The function sign is defined as: 

sign( X, Thres ) = {
1, X ≥ Thres

0, X < Thres
          (3) 

The IMU-based and RR interval-based flag bits are 

evaluated jointly. ECG segment where both flag bits are 1 

at the same time are finally marked as 1. 

 

2.2. Modified adaptive Wiener filter 

For ECG, local ECG S(n) is assumed to be disturbed 

by noise N(n) at discrete time point n. S(n) and N(n) are 

uncorrelated. The observed ECG Y(n) is defined as: 

Y(n) = S(n) + N(n),  n = 0,1,…,N-1            (4) 

The prior Φs(n) of S(n) is estimated using the average 

of PSD of the QRS: 

Φ
ŝ
(n) = 

∑Φ
QRS

( n )

m
                              (5) 

The prior Φn(n) of N(n) is estimated using the average 

of the PSD between RR interval: 

Φ
n̂
(n) = 

∑Φ
SQ

( n )

m - 1
                            (6) 

where m is the total number of R waves, Φ
ŝ
(n) and 

Φ
n̂
(n) is the estimated value. 

The location of each wave is initially estimated based 

on the length of each wave of the standard ECG, the 

location of the R wave, and the sampling frequency. The 

estimated prior SNR γ is defined as: 

γ = 
Φ

ŝ
(n)

Φ
n̂
(n)

                                   (7) 

After Y(n) is made to be zero-mean by preprocessing, 

the error estimate between the desired output S(n) and the 

actual output Ŝ(n) is defined as: 

ex(n) = S(n) – Ŝ(n) = S(n) - hTY(n)      (8) 

where h = [h0, h1, …, hL-1]
T
 is the transpose of a finite 

impulse response (FIR) filter of length L, Y(n) = [YL-1, 

YL-2, …, Y0]T is a window vector containing L samples 

of observed signals. 

Assuming that the best estimate of the pure ECG So(n) 
is Ŝo(n), the optimal Wiener filter coefficient ho can be 

obtained: 

ho = argmin
h

{ ex
2(n) }                       (9) 

According to the Wiener-Hoff equation, 

Ry ho = E{ Y(n)S(n) } =  ry -  rv       (10) 

where Ry  is the correlation matrix of Y(n), rv  and ry 

are correlation vectors, which are the first column of the 

correlation matrix Rv  of N(n)  and Ry  respectively. 

Therefore, ho can be defined as: 

ho =  u1 - Ry
-1 rv                       (11) 

where u1 = [1, 0, …, 0]T . Compared to ECG, the 

additional noise value is assumed to be equivalent to 

short-time white noise. rv and ho can be defined as: 

  rv = Φnu1                                            (12) 

 ho = u1- ΦnRy
-1u1   

= [ 1 - 
Φn

Ry[0]
,  1 - 

Φn

Ry[1]
, …,  1 - 

Φn

Ry[L - 1]
 ]   (13) 

So, the Wiener filter calculation parameters can be 

changed simultaneously according to the state. The final 

output of modified adaptive Weiner filter is calculated as: 

  Ŝ(n) = h0(n)
TY(n) 

= (1 - 
Φn

Ry[n]
)Y(n),  n = 0, 1, …, L           (14) 
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2.3. Heart rate performance index 

Heart rate refers to the number of heart beats per 

minute and is calculated from n adjacent R wave 

detection points as shown in: 

HeartRate[i] = [ 
n * SampleFrequence 

Rpoints[i] - Rpoints[i - n]
 * 60 ]   (15) 

where Rpoints[i] denotes the ith occurrence of the R 

wave, HeartRate[i]  is the instantaneous heart rate 

corresponding to that moment, and the units of heart rate 

are converted to counts per minute in the calculation 

process. Heart rate performance index is calculated as: 

HRscore = 
hrscore

L
                          (16) 

hrscore +=  

{
 
 

 
 

         1,     hrder[i] ≤ 0.05*hrRef

0.75,    hrder[i] ≤ 0.1*hrRef

      0.5,     hrder[i] ≤ 0.15*hrRef

  0.25,     hrder[i] ≤ 0.2*hrRef

        (17) 

hrder[i] = hr[i] -  hrref               (18) 

Where hr[i] is the instantaneous heart rate at the ith R 

wave and hrref is the reference value (or threshold), hrref 

setting varies with each ECG. L is the number of R waves. 

 

3. Results 

3.1. Database 

This paper uses the MITDB and CPSC2019 databases 

to simulate the enhancement algorithm and collect eight 

different samples for practical validation. Two sets of 

experiments are performed for each sample in each type 

of motion state for 20s. ECG and IMU data are collected 

simultaneously at 1024Hz. The specific experimental 

content is designed as shown in Table 1. 

Table 1. The experimental content. 

 

No. Type Content 

1 Relax Stand Stationary(20s) 

2 Jog Relax(5s)→Jog(10s)→Relax(5s) 

3 Walk Relax(5s)→Walk(10s)→Relax(5s) 

4 
Chest 

Expansion 
Relax(2s)→CE(16s)→Relax(2s) 

5 Jump Relax(2s)→Jump(16s)→Relax(2s) 

 

3.2.  Results of motion state division 

We choose ECG in the jogging state for verification, as 

shown in Figure 2. For the IMU signal, the IMUT is set to 

100 per segment, segment duration is 0.5s, and the data 

overlap between sliding windows is 0.25s. for R wave, 

the value of QRST is 40. 

There are some distorted signals will be missed. This 

may be because some of the noise amplitude is larger 

than the R wave, or IMU data in windows is smaller than 

adjacent window. We set a threshold (LThres). The data 

segment whose length is less than LThres is discarded 

directly. The value of LThres is 1000. 

 
Figure 2. Flag bits determined by IMU and RR interval. 

 

3.3  Results of enhancement method 

We implement an adaptive ECG enhancement method 

based on the above methods. The real-time synchronous 

IMU and ECG data in different motion states are used as 

input signals, and the noise interference outside the signal 

frequency band range is removed through pre-processing, 

then the motion intensity is judged using the motion state 

division method, and the retained data segment is used as 

the input signal for adaptive Wiener filter to suppress the 

noise in the signal frequency band. The result is shown in 

Figure 3. 

The method can distinguish the different motion state 

of ECG accurately, and automatically turning off the R-

wave detection algorithm and heart rate calculation 

method when the exercise intensity is too high and mark 

the heart rate value as -1 to indicate that this ECG 

segment is of no use. The results of ECG enhancement 

method using heart rate index are shown in Table 2. 

Table 2. HRscore before and after enhancement. 

 

State HRscore 

before 

HRscore 

After 

State HRscore 

before 

HRscore 

After 

Jog 0.2309 0.2875 Walk 0.0143 0.0147 

Jog 0.2500 0.2571 Jump 0.3495 0.3804 

Relax 0.0596 0.0601 Jump 0.2396 0.2401 

Relax 0.0760 0.0769 CE 0.0621 0.0626 

Walk 0.0289 0.0294 CE 0.2695 0.2700 

 

ECG in jogging state has a significant increase in heart 

rate index as it contains data segment of higher motion 

intensity. The index in relaxing sate is almost unchanged, 

reflecting minimal MA interference. Due to the adaptive 

Wiener filter resulting in improved R wave localization 

accuracy, there are small improvement in other index for 

less intense exercise. 
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(a) 

 
(b) 

Figure 3. Result of ECG enhancement. (a) Comparison of 

ECG before and after enhancement. (b) Comparison of 

STFT result before and after enhancement. 

 

4. Discussion 

In this work, an adaptive Enhancement method was 

proposed for ECG analysis. It contains a motion state 

division method, a modified adaptive Wiener filter based 

on Bayesian estimation. Based on the needs of clinical 

diagnosis, ECG was assessed for quality in 2 groups, and 

the retained ECG was filtered using adaptive Wiener filter 

to remove MA. The accuracy of heart rate calculation was 

effectively improved by up to 24.5% according to the 

heart rate index, which provides for the analysis of 

wearable ECG monitoring algorithms. The index is only 

applicable to the comparison in same motion state, which 

is due to the different thresholds selected between the 

different states. This is also a shortcoming of this method. 
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